The Equivariant Inverse Kazhdan--Lusztig Polynomials of Uniform Matroids

نویسندگان

چکیده

Motivated by the concepts of inverse Kazhdan--Lusztig polynomial and equivariant polynomial, Proudfoot defined for a matroid. In this paper, we show that matroid is very useful determining its polynomials, determine polynomials Boolean matroids uniform matroids. As an application, give new proof Gedeon, Proudfoot, Young's formula Inspired Lee, Nasr, Radcliffe's combinatorial interpretation ordinary matroids, further present corresponding polynomials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kazhdan-Lusztig Polynomials of Thagomizer Matroids

We introduce thagomizer matroids and compute the Kazhdan-Lusztig polynomial of a rank n+1 thagomizer matroid by showing that the coefficient of tk is equal to the number of Dyck paths of semilength n with k long ascents. We also give a conjecture for the Sn-equivariant Kazhdan-Lusztig polynomial of a thagomizer matroid.

متن کامل

TWO FORMULAE FOR INVERSE KAZHDAN-LUSZTIG POLYNOMIALS IN Sn

Let w0 denote the permutation [n, n − 1, . . . , 2, 1]. We give two new explicit formulae for the Kazhdan-Lusztig polynomials Pw0w,w0x in Sn when x is a maximal element in the singular locus of the Schubert variety Xw. To do this, we utilize a standard identity that relates Px,w and Pw0w,w0x.

متن کامل

Moment graphs and Kazhdan-Lusztig polynomials

Motivated by a result of Fiebig (2007), we categorify some properties of Kazhdan-Lusztig polynomials via sheaves on Bruhat moment graphs. In order to do this, we develop new techniques and apply them to the combinatorial data encoded in these moment graphs. Résumé. Motivés par un resultat de Fiebig (2007), nous categorifions certaines propriétés des polynômes de KazhdanLusztig en utilisant fais...

متن کامل

Fock Space and Kazhdan-lusztig Polynomials

1. Lecture 1: Affine Lie algebras and the Fock representation of ĝln. 1.1. The loop algebra construction. Let g be a complex reductive Lie algebra and let L denote the algebra of Laurent polynomials in one variable L = C[t, t−1]. The loop algebra over g is L(g) = L ⊗ g, which is a Lie algebra with the bracket [t ⊗ x, t ⊗ y]0 = t[x, y]. (1.1) The elements of the loop algebra may be regarded as r...

متن کامل

Kazhdan-lusztig Polynomials for Hermitian Symmetric Spaces

A nonrecursive scheme is presented to compute the KazhdanLusztig polynomials associated to a classical Hermitian symmetric space, extending a result of Lascoux-Schutzenberger for grassmannians. The polynomials for the exceptional Hermitian domains are also tabulated. All the KazhdanLusztig polynomials considered are shown to be monic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2022

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/21m143995x