The Equivariant Inverse Kazhdan--Lusztig Polynomials of Uniform Matroids
نویسندگان
چکیده
Motivated by the concepts of inverse Kazhdan--Lusztig polynomial and equivariant polynomial, Proudfoot defined for a matroid. In this paper, we show that matroid is very useful determining its polynomials, determine polynomials Boolean matroids uniform matroids. As an application, give new proof Gedeon, Proudfoot, Young's formula Inspired Lee, Nasr, Radcliffe's combinatorial interpretation ordinary matroids, further present corresponding polynomials.
منابع مشابه
Kazhdan-Lusztig Polynomials of Thagomizer Matroids
We introduce thagomizer matroids and compute the Kazhdan-Lusztig polynomial of a rank n+1 thagomizer matroid by showing that the coefficient of tk is equal to the number of Dyck paths of semilength n with k long ascents. We also give a conjecture for the Sn-equivariant Kazhdan-Lusztig polynomial of a thagomizer matroid.
متن کاملTWO FORMULAE FOR INVERSE KAZHDAN-LUSZTIG POLYNOMIALS IN Sn
Let w0 denote the permutation [n, n − 1, . . . , 2, 1]. We give two new explicit formulae for the Kazhdan-Lusztig polynomials Pw0w,w0x in Sn when x is a maximal element in the singular locus of the Schubert variety Xw. To do this, we utilize a standard identity that relates Px,w and Pw0w,w0x.
متن کاملMoment graphs and Kazhdan-Lusztig polynomials
Motivated by a result of Fiebig (2007), we categorify some properties of Kazhdan-Lusztig polynomials via sheaves on Bruhat moment graphs. In order to do this, we develop new techniques and apply them to the combinatorial data encoded in these moment graphs. Résumé. Motivés par un resultat de Fiebig (2007), nous categorifions certaines propriétés des polynômes de KazhdanLusztig en utilisant fais...
متن کاملFock Space and Kazhdan-lusztig Polynomials
1. Lecture 1: Affine Lie algebras and the Fock representation of ĝln. 1.1. The loop algebra construction. Let g be a complex reductive Lie algebra and let L denote the algebra of Laurent polynomials in one variable L = C[t, t−1]. The loop algebra over g is L(g) = L ⊗ g, which is a Lie algebra with the bracket [t ⊗ x, t ⊗ y]0 = t[x, y]. (1.1) The elements of the loop algebra may be regarded as r...
متن کاملKazhdan-lusztig Polynomials for Hermitian Symmetric Spaces
A nonrecursive scheme is presented to compute the KazhdanLusztig polynomials associated to a classical Hermitian symmetric space, extending a result of Lascoux-Schutzenberger for grassmannians. The polynomials for the exceptional Hermitian domains are also tabulated. All the KazhdanLusztig polynomials considered are shown to be monic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2022
ISSN: ['1095-7146', '0895-4801']
DOI: https://doi.org/10.1137/21m143995x